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suMMARY

AB an application of the concepts in NACA TN 2541, the problem of
turbulent boundary layer over a flat plate in compressible flow is
treated. The dissipation term in the energy equation, often neglected,
is first carefully studied and found to be of importance. In the dif-
ferential equations governing the fluctuations, the lower-frequenty com-
ponents of all quantities are regarded to participate in an equilibrium
in accordance with the similarity concept. After proper linearization, a
set of differential equations containing only the lower-order-frequency
fluctuations is obtafned. In.parallel withVon K6mxfn’s theory in incom-
pressible flow, the similarity scales for all the flow variables are
derived. Two possible length scales are found, and the significance of
this possibility is discussed.

.

INTRODUCTION

Prior to the develoyent of high-speed aircraft, the aerodynamic
phenome~ were satisfactorily explainedby theories based on am incom-
pressible fluid. Such a situation certainly no longer remains true.
An increasing abundsmce of research is now available, attempting to
extend the theories into the compressible range for almost every aspect-
of practicsl importance. Yet not until recently has the problem of
turbulent boundary lsyer in compressible flow attracted the,attention
of investigators. The reason is, of course, that smy turbulence problem
is a difficult one even without compressibility. Perhaps demandedby its
practical importance in the flows over an airfoil or in a wind tunnel,
or just to keep pace with the advancement of knowledge in other aero-
dynamic problems, papers dealing with the behavior of turbulent boundary
lsyer in compressible flow finally begin to appear.

. ——.. --- . _ - _ .__. - .. —...— -..——. ..— -
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Thus one has, for instance,
Wilson (reference 2). Van Driest

NACA TN 2542

the works of Ferrari (reference 1),
(reference 3), Ladenburg and Bershader .

(reference 4), and Eckert (reference 5). Except for reference 4, which
is a pure experimental measwement using interferometrtc technique, all
of them present a theoretical analysis. On retiewing these, it appears
that, in these analyses, the turbulent-dissipationterms were neglected
by the argument that any molecular phenomenon is probably of no impor-
tance in comparison with the turbulent transfer. This argument, being
without experimental backing, should be carefully investigated.

The first part of this report is concerned with such an investiga-
tion. The energy equation is studied in some detail, and the orders of
magnitude of the various terms are estimated, with the help of available
experiments. The turbulent dissipation is found to be not negligible at
least for boundary-layer flow over an insulated wall. Von K&&n’s
formula for the mixture length has been used in this analysis; but the
conclusions reached on the order of magnitude of the various terms are
presumably correct, even though the distribution of scale of turbulence
may be only roughly given by that formula.

The second part of this report is an attempt to extend Von K&&n’s
similarity theory to the turbulent flow of a gas in the boundary layer.

.

This extension is based on the ideas developed in reference 6. It turns
out (see reference 7) that the theory has a certain universal character u
wi# regard to the Mach number and the heat-transfer conditions at the
wall, and the unavoidable correlation constants can be determined once
for all. Owing to the lack of suitable experimental data, the numerical
part of the theory cannot be pursued and is left to the future.

This work was conducted at the Massachusetts Institute of Technology
under the sponsorship and with the financial assistance of the National
Advisory Committee for Aeronautics.

ENERGYEQUATIONAND DISSIPATION TERM

In problems of compressible flow, a relation between the velocity
field and the temperature field.is
In applying the energy equation to
customary practice to neglect both
cosiiqyterms. The reason implied,
molecular phenomena would make but
with the turbulent transfer terms,

furnished by the equation of ener~.
turbulent phenomena, it has been the
the heat conductivity and the vis-
or sometimes stated, is that the
very small contributions in comparison
just like the situation in the

.
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equations of momentum. Undoubtedly such vague ‘argumentshave definite
limitations. The earlier applications were for the problem of tempera-
ture distribution in turbulent flow at low mean velocities. There is a
predominant temperature field. The conduction terms are of the same
nature as the viscous shear in the equations of momentum. The heat
generated through viscous dissipation,being cauaedby the velocity
fluctuations, is probably small because of the large mechanical equiv-
alent of heat. Hence it seems reasonable that for low Mach nunibersthe
neglect of molecular terms would be justified. Recently, in treat@
turbulent boundary layer in supersonic flow, various authors have retained
such a procedure without questioning its validity (references 1 and 3).
The following is an attempt to disclose the decidimg factors in assessing
the relative weight of the molecular terms and the turbulent terms. Moat
important of all, the dissipation term is found to be not negligible in
the case of boundary-layer flow over an insulated wall, irrespective of
Mach number.

One may first write down the complete ener~ equation (reference 8,..
p. 606)

where Cv is

conductivity,

the specific heat at constant volume, k is the heat

and 0 is the dissipation, defined by
.

(1)

(2)

The first term on the left-hand side represents the convective action.
Equation (1) is the equivalent of the statement that following a particle
the temperature change is due to three kinds of heat sources: The com-
pressibility, the heat conduction, and the dissipation. Without essentisl
difference, let the incompressible case be considered. Then equation (1)
becomes,

(3)

—-.-.—— .. —_— _ .—— —— ——— ——



4 NACA TN 2542

obtained by omitting the c&pressibil.ity terms and dividing through with
c~. (See appendix for definitions of qyibols.) Here 7 = cp/cv, the

ratio of specific heats, u = c&/k, the l?randtlnumber, and e = !#/p.

In turbulent flow, each quantity msy be split into mean and fluctuating
parts; that is,

It is now intended to compare

typicsl term on the left-hand

WE+ L#rp + 1;(F+ “) (3a)
G a

the terms on the right-hand side with a
d~

side, such as v’ —.
dv

The mean flow is
“

assumed to have a chsxacteristic velocity ~ in the x-direction, as in
boundary-lsyer or wake flows.

(1) The molecular conduction term

Let

Then

/

ld%lr.=———
u # yv

.

(/)yvld%d~=— —— —
av’dy2dy

(In the following discussions of the orders of magnitudes suitable root-
mean-square values w5XL be implied without explicit notation.) At least
for a study of the order of magnitude, one may use Reynolds’ aklo~
(reference 8, p. 649 ff.) to relate mean temperature with mean velocity;
that is,

.

..—. — --—— ._. —.
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where 2 maybe interpreted as either the mixing length or Von K&m&n’s
similari~ scale. Thus,

()Ivrl.()——
UT’2

or

(4a)

(4b)

where L is the characteristic length of the mean flow and RL iS the

mean-flow Reynolds nur.riber,defined by

RL = E/v

Two illustrative cases may be given. For jet or wake flow, L my be

taken aE the “breadth” of the wake, where ~ = ~-~. The well-known

theories (see, e.g., reference 9) assume

L/1 = constant

the constant being of the order of 0.2 for two-dhensional jets. The
ratio rl is indeed small throughout the section. In the case of
boundary-layer flow, L may be taken as the thiclmess of the layer and

2 *o.4y

Then equation (h) indicates that rl becomes important only when very

close to the wall, where laminar stilayer”comes in my-way.

A

enilly

where

Except

——- ._-——_

different form of formula (h) will also show that rl is gen-

smdl. Introducing the turbulence Reynolds number RX = u’X/V,

1 is the microscalej equation (b) becomes

()i Ut 1
rl*O———

uv’~

when near a solid wall,
()

u’/v’ * 0(1), so rl m O ~ .
Rx

(4C)

—. _____ .— — —.— —-—. . .



6 NACA TN 2542

(2) The molecular conduction term ~V%?’ due to fluctuating

temperature: The term V+’ involves second derivatives of a fluctu-
ating quanti~, therefore greatly Mluenced by the high-frequency
components of the fluctuation. It will be compared with a

1 aT‘
term —v’ —. Before the comparison, however, one may observe that

?V &
the neglect of viscous shear in the equation of momentum implies the
following relation:

,,

.

/

a%’ , au’r2 .~ — —
aY2vb ’<<1

(5)

in spite of the high-frequency components in a%’ /ay2. Now form the
ratio

.

(/)V 1 %?’ T’
my.———

Uv’w &

(6a)

.

Rewriting,

(la+p# auf~
‘3*0–

)
rp

o ~T’/& a2u’fi2

Reynolds’ anslo~ assumed that the temperature and

(6b)

velocity fluctuations
are proportio~-. Although
to hold for the derivatives
ponents, it is likely that,

such an approximate picture cannot be expected
largely controlled by the high-frequency com-
at least,

/

1 a2Tf 1 a2u’—— m 0(1)
E&2 ?&2

———. .-.——_—
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where ~- is the mean temperate difference across the boundary lsyer
and ~ is the mean free-stream velocity. Then equation (6b) reduces to

()

r2
r* 0~, <<l
3

(3) me dissipation terms ~ and G‘: The g?der of magnitude of
the dissipation term is to be compared with v’ dT/dy on the left-hand
side. To begin with, one discsrds the contribution of the mean flow
veloci~ gradients to the dissipation, as a consequence of the discussion
in reference 6. Then,

+y+2(?&)2+. . .

[)@m2iw?
ax

.

The relative magnitude
following equation:

( )_
~
r

of 6’

+2

and T msy be seen by studying the

~L

Batchelor and Townsend (reference

for both isotropic turbulence and

-1

(7)

(8)

J

10) measured the quantity(wET12
in the wake of a cylinder. Sine’e%he “d

—. —— -— ——— –—— — –-———



8 NACA TN 2542.

high-frequency components sre responsible for 6, one expects the ratios
in the two cases to be close to each other. It turns out that the wake
case has a higher ratio but both were within 10 percent of the value 4.0.

Q

1

It may theref;re be concluded that .

rk m O(1)

For the order of magnitude of the mean dissipation Z Taylor’s
work may ftist be cited (reference 12). For a channel flow and
omitting compressibility,the work done on an elementary volume is
-T ~ ~bre

dv’
T is the total shear~ stress, viscous plus turbulent.

Base~ on experimental
dissipation est-ted

measurements, the microscale was evaluated and the
by the formula

.

which was originally derived for isotropic turbulence. Plotted across
the section, his results indicate that these two terms are essentially
of the same order of magnitude over a greater part of the section except

,.

near the center line and the wall. The dissipation further does not
change its order of magnitude in these regions. The transfer of turbulent
ener~, being the difference of the two, is therefore, in general, not
sufficiently important to alter their orders of magnitude. It seems now
justifiable,based on Taylorts experience, to estimate the order of—
magnitude of ~ by evaluating T u

Q
at points near half the thickness

in the case of a boundary-layer flow, where the velocity profile is
rather similsx to a channel flow. In a jet flow, the region of maxhmm
viscous shear might be chosen for the estimation in order to avoid the
nearly isotropic turbulence in regions of weak shear. The correspondence
there is undotitedJy less satisfactorybut perhaps still close enough
for the present purpose.

It also msy be easily shown that, in the case of axial symmetry,
dii

the work done per unit volume becomes T ~. Taking this to represen~

the order of magnitude of
, bT

~, one may compare with the term ‘Cvur s
to determine the relative ~rtance of % in the ener~ equation.

lFor a Gaussian distribution of k’@x, the ratio would have been “

3.0. I&perimentsby SbEUons and Sslter (reference 11) indicated that u’

/[ 1
—

follows very closely a Gaussian law and indeed gave (U’)4 (U’)22 *3.0. h.

——
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To estimate T, when the mean motion depends essentially on y and
the normal velocity ? * O,

T*V$ —+ puv

.— -=P~ +p U’v’

for incompressible flow. Except very close to the wall, T * p u’v’.
-—

This formulamaybe regarded as valid even in compressible flow if only
the order of magnitude is desired. Rewriting,

where ~v is the correlation function. To compare the dissipation

with transfer terms in the equation of motion, form the ratio

Then,

,

where ~ is the

mean temperature,

(98)

characteristicmean velocity, ~m is the characteristic

and @m is-the characteristic mean temperature differ-

ente. The replacement of
/

diid~
—— by ~/~-m iS again based on Reynolds’
dy dy

.——— -— —.—
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and.ogy,
With the
becomes

identifying the mean velocity and temperature distributio~.
introduction of a characteristic lkch number ~ equation (9a)

a

( -)u’ %2
r5 m O Ruv z —

U& Z@m

Tm

r,

(%)

Thus it is seen that, with a similar turbulence pattern, the brportance

/

m–m
of the dissipation term is proportional to %2 —. The similarity of

Fm

the turbulence pattern, incidentally, needs only to cover the lower part
of the frequency spectmm, as would prevw when mean streams of d~fer-
ent velocities are passed through the same grid.

The

Jet flow
data are

criterion (gb) will now be applied to two cases of experiments on
made by Corrsin (references 13 and 14). m reference 13~ the .

as follows:

.

Jet, 1 inch

~ = Nozzle velocity = 10 meters per second

AT. = Nozzle temperature difference * 10° C

At x/d = 20, r = 5 centimeters from axis

Q% = 0.26

A!&/m-o = 0.22.

U’/ijij&l m 0.18

I
——
U’v’ q# = 0.010

$+/%) m 0.132per centtieter

—— —-.. .—-.
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(The slopes sre almost identical, indicating the approximate validity
of the Reynolds’ aalogy in this case.) Hence,

()~ o 0.07
%2

‘5 Z@.Tm

But

Thus

r5 ~ 0(0.001)

In reference 14 by Corrsin ad Uberoi there are the following data:

Jet, 1 inch

~ = 100 feet per second

m-. = 170° c

At x/d = 15, m–m= 0.3

m–. = 500 c

/_
U& w 0.4

~ = 40 feet per second

At r/r2 = 1.0 of the section, where r2 is the radius at which

N-/AZ& = 1/2,

d
( /%)—ii

dr
- 0.6 per centimeter

+plf%) *().55 per centimeter

V’/u% ‘0”1

/

—-
U’V’ %2 -0.006

.._. ____ .—.—.—_. —.— .— ..—
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Hence

~cA ~ 25k2

()
~2.

r5 m ()().06—
@/Tin

With ~2 x 0.0016 sad A?!–@-m=

r5= 0(0.001). The experience in

in jet flow the dissipation is of

0.14, one has flfiy, again,

these two cases seems to suggest that

no importante in the ener~ equation.

For qualitative results, equation (w) may be Tut into another form.
introducing the mixing length,

U’v’ = Zlv’1$$

Then

r5mO~&(~&] (lo)

This formula may be checked %y the jet-flow results. If the “breadth” b
is taken to characterize the jet spreading, similarity of the mean veloc-

ity yrofi.lewill lead to
()

dii
~ ~ = ~ at any given y/b, say y/b = 1.

Using Prandtl’s assumption of Z in jet flow,

Consequently,

TYom previous

z = Bb

equation (10) becomes

()%2rmAxBxo
5 ~–mfim

IS@=ilHltS, A X B = 0.06; its CC)WhlCY

Let equation (10) be now ayplied to boundary-lsyer
may take

~ = Free-stresm l&ch number

~ = Free-stresm temperature

(u)

is thus verified.

flow. Here one

—.— -—
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Consider the case of an insulated wall,

AZ-m= Stagnation temperature - ?-

as usually accepted. It follows that

a constant, and

13

(12a)

Now in incompressible flow, a popular approximate form of the veloci@
distribution is

where b is the boundary-layer thiclmess. Ladenburg and Bershader
measured for a supersonic stream over a flat plate (reference 4),
concluding

Putting ~~~ = (y/5)n, and taking Z = w as for incompressible flow,

one gets for order-of-magnitudepurposes

(12b)

\

.. —. —- —— -—— ———— -.z — ----
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AE previously stated, the dissipation may be esthated at the station
y/6 $UO.5. With Km 0.4,

The result of eqmtion (13)

7 = 1.4 for air,

o[hl(o.5)q

0(0.3) for n = 1/7

0(0.25) for n = l/9 (13)

shows that for an insulated wall, the dis-
sipation is of the same order of magnitude as the terms kept in the energy
equation. The usual practice of omitting the dissipation term is there-
fore incorrect. It is also interesting to see that, in boundary-l~er
flow over an insulated wsll, the weight of the dissipation term is
sensibly independent of the Mach number. Such a situation naturally will
be greatly
introduced

After

modified when excessive cooling or heating of the wall is
by auxiliary means.

EXTENSION OF SIMDXWTY TEEORY TO COMPRESSIBLE

TURBULENT BOUNDARY LAYER

the explo~tion in reference 6 of the foundations and limita-
tions of the similarity concept in the case of incompressible turbulent
bount@y-lsyer flow, it is natural to attempt to formulate a theory of
the compressible turbulent boundary l~er on a somewhat similar basis.
One recognizes that the additional density and temperature fields, the
mean distribution as well as the fluctuations, must bring in many more
difficulties. The shilarity theory was shown to involve many approxi-
mations for the ticompressible problem. The efiension to compressible
flow must therefore be made to an even more approximate degree. Never-
theless, it may again be stressed that the similari~ concept leads to
a simple model of the intrinsic turbulence mechanism, which is essentially
correct at least in incompressible flow. By using this model a unified
theory is possible for the mean velocity and temperature phenomena, with-
out the necessi~ of separate assumptions whose consistency with each
other cannot be ascertained. Ibreover, the mean distributions are not
very semitive to the
ience in compressible
lsrity model from the
the -efulness of the

assumed mechanism of the turbulence, as the exper-
flow has indicated. @ discrepancy of the shi-
true one may be expected to influence but little
theory in predicting mean distributions.
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,

A review of prevailing theories of compressible turbulent boundary
layer discloses that a better fundamental concept can be claimed by
none. The earliest attempt by Von K6m6n (reference 15) was to sub-
stitute the wall conditions for the stream conditions in the formulas
derived for incompressible flow. More recent ones include the compar-
atively simple theories of Wilson (reference 2) and Van Driest (refer-
ence 3), both starting from the incompressible expression

Van Driest took 2 to be Prandtl’s mixing
used Von K&n&l ‘s form

The extension to the compressible case was

length Z = KY, while Wilson

fotiy carried out by
allowing P to vary as a consequence to the temperature distribution.
By assuming the effective turbulent l?randtlnuniberequal to unity, the
mean temperature and the mean veloci~, in the case of an insulated wall,
satisfy ‘tieisoenergetic lawj

CPT+*F.

in an analogous manner as for lsminar

constant

flow . A recovery factor (refer-
ences 16 and 17) was sometimes employed as a refinement of the isoener-
getic law. For empiric61.data on the effective turbulent Prandtl number
and the validi~ of the isoenergetic law in turbulent flow, discwsions
can be found in literature. In jet flow, for instance, the effective
Prandtl mmber for ah lies between O.7 and 0.8 (reference 18). But if
dissipation terms are not negligible, the isoenergetic law cannat follow
in any case. Though useful, it must be regarded as largely empirical.

The work of Ferrari (reference 1) stsrted on a more solid basis by
including the energy equation to furnish a relation between the mean
temperature and veloci~. The assumption of a special relation, such
as the isoenergetic law for the insulated wall, is thus avoided. He
used Prandtl’s mixture-length concept to deal with momentum and enthalpy
transfers. When the two mixture lengths are taken to be identical, a
temperature-veloci~ relation is obtained and appears tobe formally the
same one which occurs in a laminar boundary layer for a Prandtl number
of unity. This coincidence perhaps maybe used to explain the fact that
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the isoenergetic law has been found to lead to no serious error. However,
Ferrari, too, neglected the viscosity terms in both the equations of .

momentum and that of energy. His procedure cannot be easily applied if
the dissipation terms, which sre shown to be not negligible, are kept.
In addition, his srgument for identifying the two mi@ure lengths (for
momentum and for enthal~) is by no means conclusive.

It is thought that especially in the compressible case an intuitive
guess to the proper form of the mixture length is rather difficult because
of the complicated interactions of the velocity, densi@, and temperature.
A systematic approach based on a clearly defined mechanism becomes nec-
ess~ in order.to achieve self-consistency.

As was previously shown in the discussion of the incompressible case,
a theory can be est~lished on an assumed stiari@ among the lower-
frequency components of the turbulent fluctuation. In extending to the
compressible case, the behaviors of the density and tgature fluctu-
ations require certain additional simplificationsbased on physical con-
cepts. The differential equations are to be satisfied in a more approx-
imate manner. Let the complete set of equations be first written down:

D1.q 1 ap
—=- .— i = 1,2,3
Dt P axi’

lDp+&+&Z:aw_O——
pm ax & az

( )_+P&+&+*DTpc~
ax ~ az

= pe
Dt

(14)

(15)

(16)

p=pm (17)

One may note that in the equations of momentum the viscosi~ terms are
neglected but not in the equation of energy as a conse~ence of the
discussion in the section “Energy Equation and Dissipation Term.” Prior
to a mathematical derivation, the procedure pay be summarized to consist
of the following considerations:

(1) Partial linearization of the differential eqmtions by neglecting .
the fluctuations of density and temperature against the mean quantities
themselves but not the derivatives of the fluctuations.
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(2) The separation of the density and temperature fluctuations into
lower- and higher-frequency components in a manner analogous to the
veloci~ fluctuations. A similari@ of the turbulence is then assumed
to include all these lower-frequency components.

(3) The dilatation of fluid element, that is,

e=&+*+&
ax & az

is regarded as a separate entity, not deducible
lower-frequency components.

from Smarity of the,

The following discussions will substantiate these points:

The partial linearization process is based on th& fact tkt, ordi-
narily, the magnitude of turbulent fluctuations is only a small fraction
of the mean quantity. For a first-order approximation, one may tske

f [j-l]‘=0 (P’)2F, <<l
F

.T&o
[r/](T’)2~, <<1

T
!

(18)

In taking derivatives, however, the fluctuation terms must be kept as
was previously done for the velocity fluctuations and with the same
arguments. By so doing it is seen that the differential equations me
satisfied to a lesser degree in comparison wfth the incompressible case.
The difference between velocity and other quantities lies in that the
mean density and temperature cannot be dismissed like the mean velocity
by the introduction of relative motion. The mean density distribution
alone essentially provides the coupling between temperature and veloci-
ties. A consequence of equations (18) is that the equations of momentum
will look exactly like those-in incompressible flow, only with a variable
mean density distribution. Thus, as very rough approximations, the
starting point of the theories of Wilson (reference 2) and Van Driest
(reference 3) is not without justification.

. —, ._—._ —- ————..



18 NACA TN 2542

For a closer examination, one separates the larger eddies from the
small ones,

P‘= Pz’+Ph’

T’ = Tz’ + Th’
}

(19)

where Subscripts Z smd h denote the lower- and the higher-frequency
components, respectively. The fluctuations are then seen to be due to
two sources, convective actions of the lsrger eddies smd heating -from
viscous dissipation. Loosely speaking, the convective actions, being
carried by eddies of the larger sizes, would show up only in the lower-
frequency components. The viscous heating comes from the very small
eddies and would contribute to both the lower- and the higher-frequency
components. The demarcation between the ‘larger” and “small” eddies
therefore becomes even less clean-cut than that in incompressible flow,
where the coupling through a densi~ variation does not exist. It is
nevertheless still conceivable that for eddies small enough, their equi-
librium is controlled by nn other than Kolmogoroff’s (reference 19)
~eters ji a ~, ji being now the local mean viscosity. For points
across the boundary-layer thickness, there is merely a shift of the
Kolmogoroff range h the wave-nunber space, the ratio of the wave nunibers
separating the Kolmogoroff range from the rest being of order unity since
the ratio of ji is only of order unity. The higher-frequency components

%’ and Th’ therefore must participate in a different equilibrium from

Pz’ and TZ’. The attempt now is to establish differential equations

governing the approximate behavior of the lower-frequency component ODQ.

It is found that, af%er partial linearization, a typical term to
be examined in the process of setting up the differential equations for.
the lower-fkequency fluctuations is &T’u’. Reasonhg in the same way

as before, the lower-frequency part of T*u’ consists of Tz’uz’ plus

some contribution fkom ‘&’uh’. Now the magnitude of ~’ is probably

of the same order as Tz’. For, one could visuslize that Tz’ for order

of msgnitude is associated with the mean distribution d~/dy, while Th’

is essentially related to the dissipation e’. The quantity e’ was
shcrwnin the section “Energy Equation and Dissipation Term” to be of the
same order as ? and also of the same order as the contribution from
@/dy. However, previous discussions indicated that uh’ 2 << u

hence
( ) (7’)%

~ ~
Th’llh’= Tz’uz’ % 11~’ =Uz’ FU

J%’)2= @)2, <<1 (20,

“
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Therefore, the high-frequency parts again may be omitted in terms like
T’u’ without seriously affecting the equilibrium of the lower-frequency
components.

There is another way of looking upon

occurring in the energy equation, relying
pretation. One could regard the operator

‘Ch‘em ask “u’
more upon a physical inter-
D/Dt as representing the

~hange following the fluid element. The higher-frequency velocity fluc-
tuations tend to average out without contributing appreciably to the

2 ~ operatormovement of the element. D/Dt should therefore be asso-
ciated with only U1’, Vz’, and Wz’. In equation (14), the quantity

after D/Dt is the velocity. Being now linear, the equation can be
split tito one for the higher frequency uh’ and another for U2’ . m

previous results for the velocity fluctuation are reproduced. In equa-
tion (16), the temperature appesrs also in a line= fashion, the lower-
and higher-frequency parts can ~ain be simply separated.

au av aw
The dilatation e = — + — + —,ax h az

deceptively simple in appearance

requires a different handling when a theory of the lower-frequency com-
ponents is desired. Firstly, the magnitude of each term in e is maimly
due to the high-frequency component rather than the low, since

[n]

~xo %2

ax ax

()
~d gz

ax has been shmn in reference 6 to depend on the very small

eddies in the study of the dissipation G. In the second place, the

20ne may get an idea of the relative importance to diffusion of the
low-frequency and the high-frequenty components by examining Taylor’s
formula (reference 20)

for

the
the

diffusion by continuous movements where R~ is tti correlation of

velocities at time interval 3 apart. Being propofiional to (7,

movement is laxgely due to the lower-frequency components.

.
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for compressible
when the densi~

consideration

where V and
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flow must be reconciled with the incompress-
remains constant. If one applies a similarity

in a very naive manner, the apparent conclusion is that

e $& au’— x O(V/L)
ax

L are the similarity scsles. It
to produce a consistent theory aside from makLng

e

e =

To say the least, such a

= C3 if F = Comtant

would then be difficult
the postulate that

O(V/L) if ~ # Constant

postulate would be too arbitrsry. A more
satisfactory concept is to regard e as an entity by itself. Although
composed of terms like au’fix, the net effeet of all three terms com-
bined together cause e to behave in its own way. The equation of
continuity (15) tells how this entity e is related to the densi~
variation.

One is nuw in a position to write down the differential e~tions
for the lower-frequency fluctuating components. From equations (14) to
(16), with partial.linearization and separation of lower- and higher-
frequency components, the followlng sre obtained:

(Z?l)

.

(22)

.

—— — _— .—
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Here ~ is to be understood as

D a
(

,a
)

,a tL
R’S+ ‘i+uz &+vz ~+wz az

IZromthe equation of state (17), one gets

Pz’ Pz’ T2’—= —+—
F F i?

1

21

(23)

(24)

(25)

where the dotile correlation ~ is omitted stice

Im the next section, similarity scales will be derived from the cibove
differential equation in parallel with the incompressible theory. The
mean velocity and temperature distributions will then follow.

KmILmIm SCALES

Based on the system of clifferential equatiom (21) to (23) for the
lower-tiequency components of the fluctuations, it is now possible to
deduce the similarity scales for these lower-frequency components and
build won them a theory of the compressible boundary layer in parallel
with the incompressible case. For the sake of simplici~, let the s@-
scrip’t Z be dropped and rewrite the equations as:

(26)

——. . . . ..- —._— —— —-–- —-
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where

and

a (-—iii+ui’
‘-a% )

●

“ (27)

(28)

(29)

D a–
( )

a ,a ,a—=
Dt %+ U+U’ X+ VF+WZ

Equation (28) is obtained by eliminating e in the eneru equation by
means of the continuity relation.

For the case of boundary layer over a flat plate, consider the state
of affairs at lsrge distances from the leading edge. There, if the slope
of the outer edge of the boundsry layer be assumed small as is usually
done for the incompressible case,3 a first approximation will be to regard

3m the incompressible case, a popular formula, though ~t too we~
substantiated, for the growth of the boundsry-leyer thickness is

hence ~+o as x+~. See, e.g., reference 21.

.

.
.

.

—. .
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the mean flowwid the boundary layer as a parallel flow varying only
1

h the normal direction, nsmely

= =ii(y)

The mean pressure is, of course, constant and equal to the value in the
main stream. In considering local similari~, the observer may be taken
to move with the local mean motion, again as in the incompressible case.
Thus,

and so on; the right-baud side of equation (26) becomes

and the dilatation reduces to

One msy recall that, at
the procedure was to use the

this point, for the incompressible case
vorticiti equation by eliminatimz the

pressure fluctuation terms on the rig&&d side-of equation-(26) from
each other. Such a step is not readily useful here because the mean
density now varies with y. Instead, by cross-multiplication,there
follows

.-

and SO
ation,

forth. Hence, if -a scale can be
equation (31) indicates that the

— .

(ii+ u’) (n)

found for the pressure fluctu-
veloci~ and time scales are

.—— — ———— -.
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determined by a relation identical with that for the incompressible case.
In other words, these scales should come from a consideration of the

.

operator D/Dt. E@=d@ &(ti+U’), ?

( )D=(ii+u’)=v’=+y~+... +*+
w

Let the fluctuating motion have a length scale ?., a time scale to,

and a veloci@ scsle Vo, where

‘o a zo/to

After substitution,

( d%

)

Vo ay’
;(ii+u’)=vo$+:20—

(
++?. $+

0 &+”” Ovl’+z F o

where subscript 1 denotes the normalized quantity:

(q’, q’) = (u’, v:)/vo

(xl> YIJ Zl) = (% Y, z)/zo

The similarim solutions require

U1‘ = U1’(xl, yl, Zl, tl)

.
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am so forth. Therefore, the mean flow q~tities must be separable
from the normalized fluctuating quantities in the above expression.
Exactly as in the incompressible case, it follows that

(32)

and, if the mean velocity ~istribution is of predominant importance, so

that the term involving =
&

must be retained,

(33)

Applying the ssme procedure to Dv’/Dt, the same set of scales is
obtained. Equation (31) is seento be satisfiedby such a choice of
scales, provided a scale for pressure fluctuation exists.

The pressure scale is easily deduced from equation (26). Let the
scale be X. One has

with Dul’/Dtl representing the normalized expression of ~(ti+ u’).

Thus,

(34)

As the next step, the e&gy equation (28) may be considered to
establish a possible scsle for the temperature fluctuation T’. A naive
approach of sgain assuming a single scale for T’ aud substituting the
rest by the results (32) to (34) will lead to additional restrictions on
the mean flow and rule out a self-consistent description. This approach

—- . . .. . ———. —— .—. ——..———-
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must therefore be abandoned. In view of the lineari~ of the
variable T‘ in equation (28), however, one can at least formally split
the temperature fluctuation T’ into three parts and rewrite equa-
tion (28) into a system of equations:

cpfi(~+%’) =0 (35)

(36)

Cp~T3’ =lZ+ (vG)’ (37)

Equation (35) is the ssme as the usual incompressfile heat-transfer equa-
tion in turbulent flow. Consequently, T1’ may be interpreted as the

temperature fluctuation caused by the mixing of fluid elements from
strata of clifferent temperatures, due to the turbulent velocity fluctu-
ations. Alternatively, one may regard equation (35) as describing that
a certain portion of the temperature is attached to each fluid element
during the process of mixing. Equatton (36) describes the contribution
to temperature fluctuation by the pressure field acting on the volume
change of the fluid elements - the compressibility effect. Such an
interpretation is most clearly seen when the pressure term is converted
back to the form of equation (35) involving explicitly the dilatation e.
The third part T3’ in equation (37) obviously represents the heating

effect of the viscous dissipation.

One may now introduce different scales 131, 192,and !33 for the

fluctuations T1’, T2’, and T3’. -ion of equation (35) leads to

Hence,

(38)
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and, if the higher derivatives of the mean temperatuxe distribution are
of predominant importante,

(39)

In a similar way,

It was previously

fluctuat@ parts

by expanding equations (36) and (37),

ep a ~02 (40)

03 a to[iR + (V~)~ (41)

shown that, for the dissipation, both the mea and the

are related to terms like

order of magnitude. Taylor’s expression of
now

G a 102/%03

Substitution into equation (41) shows

92. There are but two scales for the

equations (38) and (40).

that

Hhh’ 2
- amd are of the same

\dx /

balancing the energy yields

62 is of the same form as

tempera~e fluctuation given by

The scales of the density fluctuation must satisfy the second
relation of equations (29). Again one has a linear form and may split

P’ into several parts:

F,=~T1’+T21 +...)+=PI‘+p2’+. ..T
( PP

Denoting the scales for Pi’, Pp’~ . . . by rl) r2~ . . .j one

recasts the above into a system of equations:

Feqa=
T1

(42)

.—..— -—. ——. .. —._. ——. —- — —.
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—

Thus r2 and r3 also are proportional.

relation of equstions (29), equation (42)

d~
rl

a20G

(43)

(44)

With the help of the first

may be rewritten as

(45)

Equations (33) aud (45) are the expressions for the two scales of p’.

It is destiable at this moment to bring attentionto the entity
“dilatation.” The equation of continuity (27) has not been used in the
previous derivation of the scales. One could formally write e a vo/Zo

and find that the above scales satis~ equation (27) as well. A proce-
dure like this, however, is not justifiable on the ground of the argu-
ments in the section “Extension of S~sri@ Theory to Compressible
Turbulent Boundsry Layer.”

All the scales of the lower-frequency fluctuations have now been
related to the mean flow. There remains one yoint which needs some
clarification. The question is: For the length scale Zo, which of the

expressions, (33) or (39), shouldbe adopted?_ Evidently, if they sre
compatible, there must be

IId% dii d~ti_——

&’dY:G* al:%
(46)

.

.
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Integrating,

—
29

On the other hand, it will

between E sad ~ may be

fi
— al/a2

()

~ dT—=
w a

be seen in reference 7 that a relation

obtained from averaging the equations of

(47)

motion and ener~. The relation is fhrther independent of the choice
of 20. If the expressions of 20 from equations (33) @ (39) are

equivalent, the relation must also be reconcilable with equation (47).
Such is the case for incompressible flow when Reynolds’ analog is valid
(i.e., a~/a2= l). But, in general, one can hardly expect the com-

patibili~ relation (47) to be fulfilled, except perhaps approximately.
It will be seen later that the choice of the form of 20 determines the

distribution in the space coordinate (y-direction). At present, one will
be contented with the notion that the choice of equation (33), SW, means
more emphasis on the satisfaction of the momentum relations at the expense
of the energy relations, and vice versa for the choice of equation (39).
Some additional discussions are included in the following section.

Before a
layer, it may
involved and,
gation.

DISCUSSION

detailed treatment of the theory of turbulent boundary
be worth while to remind oneself of all the approximations
hence, the limitations to be introduced in the investi-

The preceding theory for the
the following approximations:

(1) The turbulence pattern:

turbulent boundary layer involves mainly
.

The turbulence pattern is idealized to
be such-that the small (~gh-frequency) dissipati~e eddies are separable
from the larger (lower-frequency) energy-carrying eddies. In accordance
with Kolmogoroff (reference 19),the small eddies are isotropic and
participate in an equilibrium governedby the kinematic viscosity v
and the rate of dissipation e. The larger eddies are assumed also to
participate in an equilibrium, governed by the local conditions. Here
one sees that three approximations are involved:

(a) The separ~ility of small and larger eddies
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(b) The possibility of similarity for the larger eddies

(c) The “local” character of the similarity for the larger eddies

In order that the smsll dissipative eddies maybe sepsrated, an essential
condition is that the turbulence Reynolds number be high. This, in
general, will follow if the mean-flow Reynolds number is high, for it is
a commonly accepted notion that a l@@er mean-flow Reynolds number creates
more smaU eddies. In this respect, a higher main-stream velocity out-
side the boundary layer should check better with the theory. The simi-
lari~ for the larger eddies is maimly an intuitive ~othesis and cer-
tainly needs experimental verification. The arguments for its plausi-
bility are given in reference 6. In the very simple configuration of a
flat-plate boundary layer without pressure gradient, the chances for the
realization of stiilsrity are certainly on the favorable side. One may
even take a heuristic point of view and regard the whole theory as being
an attempt to seek a similarity solution, if at all possible. The
behavior of the small eddies is decidedly different, but the order-of-
magnitude study in reference 6 indicates that the original formulation
by Von K6rm&n in 1930 (reference 22) remains valid if the fluctuations
are interpreted as the lower-frequency ones only. The scales for length
and ttie are determined from the local state of the mesa flow by
restricting attention to the immediate neighborhood of the point in
question. It is we~-known that the length scale from such considerations
is only moderately small in comparison with the boundary-layer thickness.
Expertients in the National Bureau of Standards for boundary lsyer with
a presame gradient further showed the existence of significsat large
eddies (reference 23). However, there is the consolation that for a
class of the distribution profile, pointed out by Prandtl (reference 21,
P. 132),

E =A(y+B)n+C (48)

where A, B, smd C are constsats, the magnitude of the length scale
is of no consequence. This is true because the higher derivatives, which
bring in the conditions away from the point, will form length scales

proportional to the one determinedly dii/dy and d%/dy2. The loga-
rithmic distributionbelongs to the class (48) and so do the usual power
(1/7, 1/9, etc.) laws.

.

(2) The boundary-layer growth: The growth of the thickness of the
boundary lsyer has been neglected in the present theory, as everything
is assumed to depend on the coordinate y only. Such a neglect is

.3
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equivalent to the stipulation that db/dx <<1, 5 being the boundary-
layer thichess. In the incompressible case, semiempirical.lythe gen-
erally accepted’formula is

which sh&ws that, although the rate of decrease of the slope is rather
slow, d8/dx could be,as small-as one wishes at distances very far flrom
the leading edge. In’applying the theory to moderate distances from the
lead- edge, one must be aware of this limitation when compared with
experiments.

(3) The two choices of the length scale: With the extension to
the compressible case, two possible choices of the length scale are
found, depending on whether the equations of momentum or the equation
of energy is to be better satisfied. Unless the two scales are essen-
tially identical, in the manner discussed at the end of the section
“Similsxity Scales,” an added degree of approximation is involved,
because one of the expansions has to be cut downto the order of the
first derivative only. In this situation, the validi~ therefore hinges
on whether the second derivative is sufficiently small in comparison
with the first for either V or ~. In other words, the approximation
will still be good if one of the two scales is much larger than the
other, for example,

:/5<<:/s
so that, for local behavior, only the smaller scale

(here $%)
controls the motion. As an extreme case for the &ose of filustration,
suppose that a large amount of heat were=taken aw’qfat the flat plate to
reduce the wall temperature to that in the free stream. The temperature
profile_in the boundary layer would be approxhately uniform. The
term dT/dy, and so forth enters the determination of the length scale
through the convective action and is obviously unimportant in this case.
One must then choose the length scale from the ~elocity profile. In the
general case, it can only be hoped that ~he actual distributions do not
depart too much from the relation (k-6),which holds for approximately
identical scales.

(4) The effect of pressure gradient: It is interesting to observe
that the introduction of a pressure gradient renders impossible the
extension to the compressible case. This is so because the scale for
the pressure fluctuation can no longer be determined as related only to
the veloci~ scale (cf. equation (34)). Without a similarity among the

——-.————— . —.-—c . .. . .— —.
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pressure fluctuations, there follows no similarity for the temperature
and the density fluctuations. ‘Theentire scheme breaks down. Difficulty
like this does not imfluence the incompressible case, where the pressure
fluctuation is of no consequence sad of no interest. A remark may be in
order about Von K&m&n’s initial derivation ti considering a channel
flow. His derivation started from the vorticity equation. Such a pro-
cedure is still permissible ti the present theory when ~ remains con-
stant, so that pressure terms can be eliminated by cross-differentiation
of eqution (26). The same similarity theory would then be obtained.

When the results of the present theory for a flat-plate boundary
layer are to be applied to the case of an airfoil, the additional restric-
tion to the ~ssible degree of agreement should be kept in mind.

Massachusetts Institute of Technology
Cambridge, Mass., December 27, 1950

.

.

.
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APPEmIx

SYMBOLS .

rljr2yr3

‘4’‘5 1
‘l>‘2)=3

t

to

u,v,w

‘k,y,z

L

%“

cOnstant s

specific heat at constant pressue and constant volume~
respectively

dilatation

coefficient

( )au+av+alJ
ax by az

of heat conductivity of fluid

mixture length or similsxity

simE1.srityscale of length

scale of length

pressure

mean pressure and mean

ratios of various heat

pressure in free stream, respectively

conduction and viscous dissipation
terms to turbulent transfer term in equation of energy,
discussed in section “Energy Equation and Dissipation
Term”

similarity scales of three components of density fluctu-
ation, defined by equations (42) to (k.k)

time

,similarity scale of time for fluctuations

velocity components in x-, y-, and z-directions,
respectively . .

Cartesian coordinates; x, axis in direction of plate and
free stream; y, axis normal to plate; and z, axis
parallel to leading edge of plate

characteristiclength

characteristicMach number

.——. .— —. ——___——. —.——
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gas constant in equation of state

characteristicReynolds number

correlation constsat between u‘ and v’

turbulence Reynolds number

temperature

characteristic

characteristic

mean temperature

mean temperature difference

mean temperature at wall

mean velocity component in x-dtiection

characteristic mean velocity

ratio of specific heats

thickness of boundary layer

rate of dissipation and its fluctuating component,
respectively -

shiltcrity scales of temperature fluctuation defined by
equations (38), (4-o),and (41), respectively

Taylor’s microscal.eof turbulence

coefficient of viscosity

coefficient of kinematic viscosity

shilarity scale of pressure fluctuation

density of fluid

shearing stress

dissipation function in equation of ener~

— ——— —-.—.
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Subscripts:

2 low-frequency part of fluctuations

h high-frequency part of fluctuations

1 nomalized fluctuatingcomponents, for example,

in free stream

Barred quantities always represent
represent fluctuations.

and so forth; also, quantities

mean values; primed quantities

.

.

.
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